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Abstract: In a 5G mobile communication system, cell search is the initial step in establishing downlink synchronization between user equip⁃
ment (UE) and base stations (BS). Primary synchronization signal (PSS) detection is a crucial part of this process, and enhancing PSS detec⁃
tion speed can reduce communication latency and improve overall quality. This paper proposes a fast PSS detection algorithm based on the 
correlation characteristics of PSS time-domain superposition signals. Conducting PSS signal correlation within a smaller range can reduce 
computational complexity and accelerates communication speed. Additionally, frequency offset can impact the accuracy of calculations dur⁃
ing the PSS detection process. To address this issue, we propose applying convolutional neural networks (CNN) for frequency offset estimation 
of synchronization signals. By compensating for the frequency of related signals, the accuracy of PSS detection is improved. Finally, the analy⁃
sis and simulation results demonstrate the effectiveness of the proposed approach.
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1 Introduction

T
he communication between user equipment (UE) and 
the base station (BS) is established via wireless sig⁃
nals, where cell search serves as the initial step for ter⁃
minal devices to access the 5G network. After power 

on, users need to perform a cell search to quickly identify 
their current cell, obtain the cell ID, and achieve time-
frequency synchronization. The detection of the primary syn⁃
chronization signal (PSS) in 5G is an important process in 
wireless communication, involving the identification and de⁃
coding of the PSS from received signals. PSS is one of the sig⁃
nals that help the UE synchronize with base stations, enabling 
devices to determine the start of wireless frames and decode 
additional signals. It also plays a key role in identifying 5G 
cells; when combined with the secondary synchronization sig⁃
nal (SSS), it can uniquely identify a cell. Through effective al⁃
gorithms and techniques, efficient PSS detection can be 
achieved under various channel conditions, ensuring reliable 
synchronization and network access capabilities for the UE.

Several research findings regarding PSS detection algo⁃
rithms have been proposed. Starting from the basic principles 
of the 5G initial access process, JEON et al. [1] proposed the 
cell search process and the PSS structure of the 5G communi⁃
cation system. CHAKRAPANI[2] proposed the composition of 
the synchronization signal block (SSB) carrying PSSes. 
BALASUBRAMANYA et al. [3] proposed a design scheme for 

4G PSS in the evolution of 5G technology. A new method for 
rapid detection of PSS by UE was introduced in Ref. [4], 
which improved fast synchronization between terminals and 
networks. YOU[5] proposed a sequential integer carrier fre⁃
quency offset (ICFO) and edge master synchronization signal 
(S-PSS) detection scheme to reduce complexity in the 5G new 
wireless vehicular Internet of Things system. There are also 
various solutions to the frequency offset problem in PSS detec⁃
tion[6]. In Ref. [7], the authors described a program for synchro⁃
nizing 5G networks and proposed two methods to estimate fre⁃
quency offset (FFO). The first method utilizes the carried infor⁃
mation, and the second method involves partial cross-
correlation of PSS, which is applied to each orthogonal fre⁃
quency division multiplexing (OFDM) symbol in the SSB, with 
the phase of the auto-correlation peak used to estimate the 
value of FFO. However, synchronization errors can reduce the 
performance of maximum likelihood (ML) methods[8]. Some re⁃
searchers have adopted joint detection and estimation meth⁃
ods for initial downlink access, as described in Refs. [9] and 
[10]. The second technique for estimating FFO is based on 
replicating the correlation signal between the partial input 
PSS and the PSS over more than half of the symbol length du⁃
ration[11]. It is also noted that synchronization errors can dimin⁃
ish the performance of the FFO estimation method. In the past 
two years, significant advancement has been made in 5G PSS 
detection and the application of convolutional neural networks 
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(CNN) in physical layer algorithms. ASSAF et al.[12] evaluated 
5G New Radio (NR) frequency synchronization in the down⁃
link initial access, and proposed and investigated a reduced-
complexity FFO estimation method. In Ref. [13], a novel ap⁃
proach to enhancing the detection of PSS sequences in 5G NR 
systems was proposed. ZHANG et al.[14] proposed a scheme to 
estimate the energy per resource element (EPRE) ratio of PSS 
to SSS/demodulation reference signal (DMRS) and demon⁃
strated the proposed scheme can estimate the EPRE ratio ac⁃
curately when the signal-to-noise ratio (SNR) is above −4 dB 
through simulation results. COUTINHO et al. [15] proposed a 
CNN-based algorithm for channel estimation in the presence 
of phase noise and carrier frequency offset (CFO) in 5G and 
beyond systems. ZHENG et al. [16] proposed a decomposed 
CNN for the sub-Nyquist tensor-based 2D direction of arrival 
(DoA) estimation.

The main motivation and novelties of this paper are summa⁃
rized as follows.

• This paper proposes a fast PSS detection algorithm as⁃
sisted by a CNN neural network, which can quickly complete 
the PSS detection process after the 5G terminal device is 
turned on, thereby reducing communication latency.

• In the fast PSS detection algorithm, the sum sequence, ob⁃
tained by superimposing three frequency domain PSS se⁃
quences, is cross-correlated with the received signal in the 
time domain. A shorter time-domain sequence is determined 
based on the correlation peak and then transformed into the 
frequency domain to cross-correlate with the received signal. 
The cell ID required for PSS detection is determined from the 
correlation peak.

• Local received signals typically have a frequency offset. 
Using CNN-assisted frequency offset correction algorithms 
can yield corrected received signals, thereby enhancing the ac⁃
curacy of PSS detection results.
2 Background Description

2.1 5G Cell Search Procedure
The 5G NR cell search process is a key step for UE to find 

and access suitable serving cells in the network when it is 
turned on or needs to reconnect. The specific steps of the 5G 
NR cell search are as follows:

Step 1: The NR terminal adjusts the radio frequency (RF) re⁃
ceiver to the designated receiving frequency to capture the signal;

Step 2: The PSS synchronization detection is performed to 
obtain time slot timing information and retrieve the sector 
number N (2)

ID  within the cell group;
Step 3: Frequency offset compensation is applied;
Step 4: Based on the relationship between PSS and SSS in 

the synchronization signal and the physical broadcast channel 
(PBCH) block, the NR terminal performs frequency domain 
correlation detection on the SSS to obtain the cell group num⁃
ber N (1)

ID ;

Step 5: The NR terminal obtains the cell ID using the pre⁃
viously obtained cell group ID N (2)ID  and cell group ID N (1)ID . 
Then, retrieve the corresponding DMRS information from the 
PBCH based on the cell ID to obtain the SSB index, which 
corresponds to the beam ID[17];

Step 6: The PBCH symbol is decoded to obtain the master 
information block (MIB) information;

Step 7: The cell search process is completed, enabling the 
UE to perform a random signal access process for uplink syn⁃
chronization.
2.2 PSS Detection

From the cell search process described above, it is evident 
that the PSS synchronization detection process is the initial 
step for mobile terminals to access the network. This step en⁃
ables terminal devices to perform tasks such as sector identifi⁃
cation N (2)ID  recognition, frequency synchronization, neighbor 
cell search, and fast locking. Specifically, after several steps, 
such as coarse time synchronization, frequency offset estima⁃
tion, fine synchronization, SSS detection, and beam ID detec⁃
tion, users can receive and interpret the physical broadcast in⁃
formation of the cell, obtain MIB and system information 
block (SIB), and complete cell access through random access 
and other processes based on the system messages received. 
In these steps, coarse time synchronization involves position⁃
ing the timing synchronization within the cyclic prefix range, 
which is accomplished using PSS signals. 5G PSS has strong 
autocorrelation and cross-correlation properties, which are lev⁃
eraged for coarse time synchronization. Since there are only 
three sets of PSS sequences and the generation of SSS signals 
is linked to both cell group identification and sector identifica⁃
tion, performing PSS detection first reduces synchronization 
complexity and facilitates the retrieval of necessary physical 
cell information. By utilizing the correlation characteristics of 
the PSS to demodulate the PSS in the received signal, the 
starting position of OFDM symbols and the sector ID, N (2)ID , car⁃
ried by PSS can be determined. Based on the fixed time-
frequency position of SSB, once the time-frequency position of 
PSS is established, the time-frequency position of SSS can be 
determined. The frequency domain position of the SSS 
matches that of the PSS, while in the time domain, the SSS is 
shifted by two OFDM symbols from the position of the PSS. 
Using the generation rules or cross-correlation characteristics 
of SSS, the SSS sequence can be demodulated to determine 
the cell group ID, N (1)ID , carried by SSS. The cell identification 
number can be calculated from the relationship between the 
cell group ID and the sector ID, completing the downlink syn⁃
chronization process and allowing the terminal to access the 
base station’s network. From the above process, it is clear 
that quickly determining the frequency domain position of 
PSS can improve the speed of cell search, enabling terminals 
to access the network more rapidly.

The traditional PSS detection algorithm generates a local 
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PSS time-domain sequence and performs 
cross-correlation calculations with the re⁃
ceived signal. The PSS sequence has good cor⁃
relation characteristics, and sliding cross-
correlation can fully leverage these properties.

First, three sets of local PSS time-domain 
signals are generated, followed by point-by-
point sliding cross-correlation with the re⁃
ceived signal. Significant peaks occur only 
when the local PSS sequence matches the 
PSS sequence in the received signal. The 
maximum correlation value is identified, 
and the position of this maximum value 
serves as the synchronization point for the 
PSS. Simultaneously, the PSS sequence 
that detects the peak corresponds to the sec⁃
tor ID number it carries.

The sliding cross-correlation detection pro⁃
cess is shown in Fig. 1.

The frequency band occupied by 5G com⁃
munications is relatively broad, encompassing a total of 29 fre⁃
quency bands. They are primarily divided into two spectrum 
ranges: 26 frequency bands below 6 GHz (collectively referred 
to as sub-6 GHz) and 3 millimeter wave frequency bands. Cur⁃
rently, sub-6 GHz is primarily used in China, and it includes 
7 frequency bands: n1, n3, n28, n41, n77, n78, and n79. 5G 
supports a maximum bandwidth configuration of 400 MHz. In 
the standalone (SA) mode, the SSB frequency domain location 
where the PSS is located must be determined by the global 
synchronization channel number (GSCN). Due to the extensive 
bandwidth of 5G NR, the concepts of GSCN and the Global 
Synchronization Grid have been introduced. The SSB fre⁃
quency domain is positioned at integer intervals of the Global 
Synchronization Grid and terminals search for synchronization 
signals at these intervals. For frequencies below 3 GHz, the 
frequency scanning interval is 1.2 MHz; for frequencies be⁃
tween 3 GHz and 24.25 GHz, the interval is 1.44 MHz; for fre⁃
quencies between 24.25 GHz and 100 GHz, the scanning in⁃
terval is 17.28 MHz. The frequency range, SSB position, and 
GSCN determination are outlined in Table 1.

In the non-standalone (NSA) mode, the SSB frequency do⁃
main position is also uncertain, and the terminal is notified of 
the SSB frequency point position through high-level signaling. 
This introduces uncertainty in the SSB position across the en⁃
tire bandwidth. The PSS sequence is a part of the SSB, as 
shown in Fig. 2, and the frequency-domain position of the PSS 
sequence is similarly uncertain across the entire bandwidth.

PSS sequences at different frequency domain positions may 
generate distinct time-domain sequences through the inverse 
fast Fourier transform (IFFT), leading to a rapid increase in 
computational complexity, which is unsuitable for 5G NR sys⁃
tems. Additionally, the large volume of received data further 
exacerbates computational complexity. This combination re⁃

sults in higher computational complexity, causing significant 
computation delays, longer communication delays, and re⁃
duced network communication quality. To address these chal⁃
lenges, this paper proposes a CNN-assisted PSS detection 
method to quickly determine the frequency domain position of 

Table 1. Global synchronization grid
Frequency 
Range/MHz
0–3 000

3 000–24 250

SSB
N*1 200 kHz+M*50 kHz,

N=1:2 499, M∈(1,3,5)
3 000 MHz+N*1.44 MHz,

N=0:14 756

GSCN

3N+(M−3)/2

7 499+N

GSCN Range

2–7 498

7 498–22 255
GSCN: global synchronization channel numberSSB: synchronization signal block

Figure 1. Traditional PSS detection algorithm

PSS: primary synchronization signal

Figure 2. Structure of synchronization signal block

PBCH: physical broadcast channelPSS: primary synchronization signal RB: resource blockSSS: secondary synchronization signal
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the PSS, thereby shortening synchronization time and acceler⁃
ating the cell search process. The existing PSS signal synchro⁃
nization detection algorithm performs correlation operations 
on PSS sequences at various frequency points within the work⁃
ing frequency band in the time domain. Due to the lengthy 
PSS sequence (and consequently, the received signal), corre⁃
lating the three PSS sequences with the received signal leads 
to high algorithm complexity and considerable computational 
demands, resulting in prolonged communication delays. More⁃
over, unlike 4G technology, the SSB in 5G NR is no longer 
fixed in the middle of the frequency band. The flexible place⁃
ment of SSB time-frequency positions increases the initial 
blind detection computation of PSS, impacting the speed at 
which users can decode base station broadcast information 
and ultimately diminishing network communication quality.
2.3 System Model

During propagation, the transmitted signal is first corrupted 
by multi-path fading and additive white Gaussian noise 
(AWGN). CFO is introduced owing to the oscillator mismatch 
between BS and UE. The received signal is then modeled as[19]:

r (n) = s (n) e
j 2πεn

N + ω (n) (1),
where s (n) is the transmitted signal, ω (n) is the zero mean 
AWGN with unity variance, and ε denotes the relative CFO 
normalized by the sub-carrier frequency spacing.
3 CNN-Assisted Fast PSS Detection Algorithm

Given the high complexity of traditional PSS detection algo⁃
rithms and their limited resistance to frequency offset and 
noise[20], there is a pressing need for a new algorithm that of⁃
fers fast processing speed, anti-frequency offset capabilities, 
and effective correlation utilization. To address this, this pa⁃
per proposes an algorithm based on the CNN method to pro⁃
cess the received signal sequence in the presence of fre⁃
quency offset. It further leverages the cross-correlation fea⁃
tures of frequency-domain superimposed signals to optimize 
PSS detection. This approach not only enhances the resistance 
to frequency offset but also significantly improves the PSS de⁃
tection speed, thereby reducing communication latency. The 
processing flow of the proposed PSS detection optimization al⁃
gorithm consists of the following steps.

1) Step 1: Generate a polynomial based on the PSS se⁃
quence. The specific implementation method is as follows. 
There are 1 008 physical layer cells in NR, and the formula 
for calculating NR cell IDs is:

N cellID = 3N (1)ID + N (2)ID (2),
where N (1)ID ∈ {0,1,…,335}, carried by SSS, and N (2)ID ∈ {0,1,2}, 
carried by the PSS. The primary synchronization signal is de⁃
fined in 3GPP protocol TS38.211 and utilizes three m-

sequences of length 127 to represent the three values of N (2)ID .
To construct the PSS sequence, zeros are inserted at 

both ends of the dPSS,i(k) sequence (where i = 0,1,2 and k=
56, 57,…,182) for a local sequence length of 127. This pro⁃
cess extends the sequence to a total length of 256, result⁃
ing in PSS i (k ), which is expressed as:

PSS i(k) = ì
í
î

0, k = 0,1,2,⋯,55,183,⋯,255
dPSS,i( )k , k = 56,57,⋯,182                  (3),

where i=0, 1, and 2. The generation formula maps 
PSS i(k) ,i ∈ {0,1,2} to the corresponding N (2)ID .

2) Step 2: Overlay three frequency-domain PSS sequences. 
In the second step, the three frequency-domain PSS se⁃
quences are overlaid to create a sum sequence PSSsum. An 
IFFT is then applied to convert the frequency-domain se⁃
quence into a time-domain sequence pss_tsum(k) , k =
0,1,2,⋯,255. The specific implementation method is as fol⁃
lows. Denote the three frequency-domain PSS sequences as 
PSS i(k) , where i = 0,1,2. We compute the element-wise sum 
of the three sequences to obtain the sum sequence PSSsum(k) 
and represent it as:

PSSsum(k) = ∑i = 0
2 PSS i(k) , k = 0,1,2,⋯, 255 (4).

The sequence shown above is transformed from a frequency 
domain sequence to a time domain sequence pss_tsum(k) 
through the IFFT process, which can be expressed as:

pss_tsum(k) = IFFT (PSSsum(k) ) , k = 0,1,2,⋯, 255 (5).
3) Step 3: Estimate signal reception and frequency offset us⁃

ing CNN. In the third step, the terminal receives the time-
domain signal r͂ (k) transmitted by the base station. A CNN 
model is then employed to correct the received signal and esti⁃
mate the carrier frequency offset, yielding r (k ). The CNN-
based carrier frequency offset estimation consists of two 
stages: offline training and online estimation. Firstly, the of⁃
fline training process involves generating a network training 
dataset through MATLAB simulation based on the statistical 
characteristics of the signal used for frequency offset estima⁃
tion. The dataset is processed from complex to real numbers 
and then used for offline training of the model. Finally, the 
trained network model parameters are saved. When estimated 
online, the received OFDM system signal r͂ (k) is converted 
into real numbers and transmitted to the trained CNN model. 
The estimation result r (k ) can be directly output based on the 
trained network parameters.

4) Step 4: Determine the peak value and time offset using 
correlation operation. A correlation operation is performed be⁃
tween the sequence and the time-domain received signal r (k ) 
to determine the peak value and corresponding time offset 
value k0. The specific implementation process is as follows.
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• Cross-correlation operation
We cross-correlate the time-domain sequence 

pss_tsum(k) , k = 0,1,2,⋯,255 with the local received signal 
r (k ), where k=0, 1, 2,⋯, 255. The cross-correlation function 
C (k) is defined as:

C (k) = |∑n = 0
N - 1pss_t*sum (n ) r (k + n) |2 (6).

Here, pss_t*sum (n ) is the complex conjugate of pss_tsum (n ), 
and N is the length of the sequence.

• Synchronization position determination 
The position k0 corresponding to the maximum value of the 

correlation peak is calculated as :
k0 = arg max

k
 {C (k) , k = 0,1,2,⋯} (7).

• Visualization of cross-correlation results
Fig. 3 illustrates the cross-correlation results among the 

time-domain received signals, the three local time-domain 
PSS sequences, and their superimposed and constructed se⁃
quences. The time-domain signals are obtained by applying an 
IFFT to the frequency-domain representations of the PSS se⁃
quences and their superposition. These time-domain signals 
are then cross-correlated with the received signal to calculate 
their correlation peak values.

• Analysis of correlation peak results
From Fig. 3, it is evident that the correlation peak values of 

the superimposed sequence PSSsum (k ) in the time domain 
align with the trend of the correlation peak values of the indi⁃
vidual PSS sequences, e.g., pss_t3 (k ). While the peak magni⁃
tude of PSSsum (k ) is slightly lower than that of a specific PSS 
sequence, and the difference is negligible. This demonstrates 
the feasibility of using the superimposed PSS to determine cor⁃

relation peak values and derive the corresponding time off⁃
set k0.• Example of cell ID correlation

Fig. 3 shows the three time-domain sequences pss_ti (k ), i =
1,2,3, where i=1, 2, and 3 correspond to cell IDs 1, 2, and 3, 
respectively. The correlation results confirm that the superim⁃
posed sequence can reliably achieve time-domain synchroni⁃
zation for these cell IDs.

5) Step 5: Extract and transform the time-domain signal to 
frequency domain. In this step, a portion of the time-domain 
received signal is extracted from the corresponding time offset 
position k0 to obtain a shorter time-domain signal sequence. 
The signal is then transformed into the frequency domain us⁃
ing FFT to obtain the frequency-domain signal segment 
R0(k ). The specific implementation method is as follows.

• Signal extraction
Starting from the corresponding time offset position k0, we 

intercept a segment of the time-domain signal r (k ). The ex⁃
tracted signal segment is denoted as r0 (k), and its length cor⁃
responds to the OFDM symbol length L that depends on the 
number of sampling points, represented as intercept(k).

• Frequency-domain transformation and output
The extracted frequency domain representation of the re⁃

ceived signal is obtained as R0 (k) , k = 1,2,⋯,L. The signal 
r0 (k) is transformed by FFT into the frequency domain signal 
R0, denoted as R0 (k) ,  where R0 (k) = FFT ( r0 (k) ) , k =
1,2,⋯,L.

6) Step 6: Perform correlation to determine the PSS se⁃
quence ID. Here, the received signal is correlated with the 
three possible PSS sequences PSS i, i = 1,2,3, to determine the 
ID of the PSS sequence. The specific implementation method 
is as follows. The frequency domain signal R0 (k) is then cor⁃
related with three local frequency domain sequences 
PSS i(k) , i = 0,1,2. The maximum peak of the correlation 
value for each possibility of i is taken, and these three correla⁃
tion values are compared to obtain the maximum value. Based 
on the corresponding frequency domain signal PSS i(k) , i =
0,1,2, the corresponding small cell group number N 2ID can be 
obtained, and the corresponding PSS sequence ID can be fur⁃
ther determined. The mathematical expression for the above 
process is:

corr i = ∑
n

R0 (n + k) + PSS i (n ) (8),

PSS id = max
i

 (abs(corr i ) ) (9).

4 Simulation and Analysis
To evaluate the performance of the proposed PSS search al⁃

gorithm, a 5G cell search link was constructed using 
MATLAB 2021a. The channel environment was modeled us⁃
ing the tapped delay line-A (TDL-A) model channel. The Figure 3. Correlation peaks of superimposed signals

PSS: primary synchronization signal
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simulation parameters for cell search are shown in Table 2. 
This section simulates the main synchronization process of the 
5G NR system using MATLAB.

The simulation steps are as follows. First, according to 
3GPP TS38.211[18], a downlink signal containing SSB is gener⁃
ated for a cell with a cell identifier of 2 (N 2ID = 2), using param⁃
eters in Table 2. Next, the generated signal is passed through 
a channel model to simulate the received signal. The 5G NR 
channel model used in the simulation is a TDL. Finally, differ⁃
ent PSS detection algorithms are applied using the received 
5G signals for performance evaluation.

Fig. 4 shows the peak values obtained using the proposed 
algorithm under the aforementioned simulation conditions. 
The three subgraphs are calculated using the three local sets 
{N 2ID, ID ∈ (0,1,2)} of PSS. The proposed algorithm success⁃
fully identifies the correct N 2ID and PSS synchronization points.

Fig. 5 shows the comparison of PSS detection results be⁃
tween the improved algorithm and the existing algorithm with 
different frequency offset parameters. The accuracy of PSS de⁃
tection by the improved algorithm is higher than that of the ex⁃
isting algorithm. Especially, when the frequency offset is 
large, the PSS detection accuracy of the improved algorithm is 
significantly improved compared with existing algorithms. The 
proposed superimposed cross-correlation method can mitigate 
the frequency offset accumulation of sliding cross-correlation. 
Combined with the CNN method for frequency offset correc⁃
tion of the received signal, it offers better detection perfor⁃
mance and lower computational complexity than the tradi⁃
tional sliding cross-correlation method.

Fig. 6 shows when the SNR is low, the time consumption 
difference between the proposed algorithm and the baseline al⁃
gorithm is not significant; on the contrary, when the SNR is 
high, using the proposed algorithm to perform PSS detection 
takes much less time than the baseline algorithm, indicating 
that the proposed algorithm is more suitable for scenarios with 
high SNRs.

Fig. 7 illustrates the accuracy of PSS synchronization under 
various frequency offsets. As the frequency offset increases, 

Table 2. Simulation parameters for cell search
Simulation

Parameter Types
Channel bandwidth/MHz
Subcarrier spacing/kHz

The number of FFT points
Channel mode

Sampling frequency/MHz
Frequency offset/kHz

SSB block type
CP type

Configuration Parameters
100

15, 30
1 024, 4 096

TDL-A, CDL-A
122.88

0.2, 0.8, 2.8
Case C

Standard
CDL-A: clustered delay line-ACP: cyclic prefixFFT: fast Fourier transform

SSB: synchronization signal blockTDL-A: tapped delay line-A

(a)

(b)

(c)
PSS: primary synchronization signal

Figure 4. Correlation peak plot calculated by proposed algorithm 

Figure 5. Probability of primary synchronization signal search algorithm

(a) Channel mode: TDL-A

(b) Channel mode: CDL-A
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the algorithm performs well and tends to stabilize.
Fig. 8 illustrates the CNN neural network architecture, 

which consists of several key layers designed to optimize PSS 
detection in 5G NR systems. The architecture begins with an 
input layer that processes the received signal data, followed 
by a series of convolutional layers that extract relevant fea⁃
tures from the signal. Each convolutional layer is paired with 
activation functions, such as the rectified linear unit (ReLU), 
to introduce non-linearities. These layers are followed by pool⁃
ing layers that reduce the dimensionality of the feature maps, 
which decreases computational complexity and improves gen⁃
eralization. The final layers include fully connected layers that 
aggregate the features and output a classification decision or 
prediction, such as the PSS sequence’s position or the sector 
ID. This CNN architecture is tailored to enhance detection ac⁃
curacy and robustness against frequency offsets and noise, 
making it suitable for high-performance PSS detection in dy⁃
namic 5G environments.

In the conventional method, the main complexity comes 
from the correlation operations, while in our proposed method, 
it comes from correlation operations and convolution layers in 
the CNN block. Unlike existing algorithms, our proposed algo⁃
rithm exhibits higher complexity, primarily due to the opera⁃
tions of the CNN. Suppose the length of a data frame is L. Af⁃
ter downsampling, the length of the received signal is K. The 
length of a downsampling time-domain PSS sequence is N. Us⁃
ing the traditional sliding correlation method, the sliding win⁃
dow length is K−N+1, representing the number of correlations 
required for a set of local PSS signals to complete synchroniza⁃
tion detection. Each correlation operation involves N complex 
multiplications and N−1 complex additions. Therefore, sliding 
cross-correlation requires 3N(K−N+1) complex multiplications 
and 3(N−1) (K−N+1) complex additions. The order of magni⁃

tude of the calculation is 3O (NK ). The proposed superim⁃
posed correlation method requires N(K − N+1) +3N(L − N+1) 
complex multiplications and N(K−N+1)+2N+3N(L−N+1) com⁃
plex additions, where L ≪ K. Given P is the number of trans⁃
mitting antennas, M is the number of receiving antennas, and 
Nc is the number of subcarriers, with the CNN network com⁃
prising two convolutional layers of kernel size 3 (see Fig. 8), 
the additional complexity introduced by the algorithm is  
O (2P × M × 2 × 32 ). The proposed algorithm enhances de⁃
tection and estimation performance, especially in the presence 
of a CFO. Considering the computational load of the CNN al⁃
gorithm, the order of magnitude of the calculation is O (NK ). 
The total computational complexity is less than that of the tra⁃
ditional sliding correlation method.

Integrating AI modules and data processing units into 5G 
base stations enables the implementation of AI-related algo⁃
rithms. This architecture can be guided by relevant patents[21].
5 Conclusions

This paper analyzes existing PSS synchronization detection 
algorithms and their characteristics in 5G NR systems, verify⁃
ing the relationship between the autocorrelation peaks and fre⁃
quency offset of three superimposed PSS signals compared 

Figure 7. Accuracy of synchronization under different frequency offsets

Figure 8. Basic structure of convolutional neural networks

Figure 6. Time consumption difference between proposed algorithm 
and existing algorithm 
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with a single PSS signal through experimental results. The ac⁃
curacy of the CNN-assisted frequency offset estimation algo⁃
rithm is examined, leading to the proposal of a new fast PSS 
synchronization detection algorithm that offers resistance to 
frequency offset and noise. In the cell search process, a 
method is introduced to determine a shorter synchronization 
signal sequence based on the frequency domain offset consis⁃
tency between the autocorrelation peak of the superimposed 
PSS signals and the correlation peak of non-superimposed sig⁃
nals. This approach reduces the computational load of PSS 
synchronization detection and enhances the efficiency of the 
NR communication system’s cell search. The simulation re⁃
sults demonstrate that the improved algorithm effectively en⁃
hances synchronization detection performance under large 
CFO conditions in the TDL-A or CDL-A channel. Future re⁃
search will focus on developing PSS detection algorithms suit⁃
able for low SNR scenarios. The performance of the CNN 
model in highly dynamic or interference-heavy environments, 
along with the computational burden on terminals and the en⁃
ergy consumption of running CNN models on resource-
constrained devices, will be studied in future research.
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