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Abstract: Along with the proliferating research interest in semantic communication (SemCom), joint source channel coding (JSCC) has domi‑
nated the attention due to the widely assumed existence in efficiently delivering information semantics. Nevertheless, this paper challenges 
the conventional JSCC paradigm and advocates for adopting separate source channel coding (SSCC) to enjoy a more underlying degree of free‑
dom for optimization. We demonstrate that SSCC, after leveraging the strengths of the Large Language Model (LLM) for source coding and Er‑
ror Correction Code Transformer (ECCT) complemented for channel coding, offers superior performance over JSCC. Our proposed framework 
also effectively highlights the compatibility challenges between SemCom approaches and digital communication systems, particularly concern‑
ing the resource costs associated with the transmission of high-precision floating point numbers. Through comprehensive evaluations, we es‑
tablish that assisted by LLM-based compression and ECCT-enhanced error correction, SSCC remains a viable and effective solution for mod‑
ern communication systems. In other words, separate source channel coding is still what we need.
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1 Introduction

Semantic communication (SemCom) has garnered sig‑
nificant attention in recent years, with researchers ex‑
ploring innovative approaches to enhance the effi‑
ciency and reliability of information transmission[1]. 

Generally, SemCom leverages deep learning-based joint 
source-channel coding (JSCC) methods to preserve global se‑
mantic information and local texture during the transmission 
process. DeepJSCC[2] pioneers these works by implementing 

JSCC with feedback and allowing for real-time adaptation to 
channel conditions. Along with its steady progress, JSCC 
has been substantially studied, mostly with the optimization 
objective shifting from bit error rates to the semantic rel‑
evance of the transmitted information in SemCom[3–14]. How‑
ever, albeit the awfully exploded research interest, one criti‑
cal question remains unsolved: why does the joint approach 
stand out, as separate source channel coding (SSCC), shall 
promise a greater degree of freedom from an optimization 
perspective?

As the terminology implies, SSCC encompasses two de‑
coupled ingredients: source coding and channel coding. The 
former part lies in effectively compressing the context, and 
the effectiveness of underlying deep neural networks (DNN)-
based predictors, such as recurrent neural networks (RNN) -

This work was supported in part by the National Key Research and Devel⁃
opment Program of China under Grant No. 2024YFE0200600, the Zhejiang 
Provincial Natural Science Foundation of China under Grant No. 
LR23F010005, and the Huawei Cooperation Project under Grant No. 
TC20240829036.

30



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

REN Tianqi, LI Rongpeng, ZHAO Mingmin, CHEN Xianfu, LIU Guangyi, YANG Yang, ZHAO Zhifeng, ZHANG Honggang 

     Separate Source Channel Coding Is Still What You Need: An LLM-Based Rethinking        Special Topic

based DeepZip[15], Long Short Term Memory (LSTM) -
based[16–17] and hybrid DNN-based Dzip[18], have been vali‑
dated widely in achieving satisfactory text compression. More 
prominently, Transformer-based[19] and Large Language 
Model (LLM)-based compression have emerged recently[20–24]. 
The latest research[25] unveils the equivalence between com‑
pression and prediction. In other words, in the general frame‑
work where statistical models predict symbols and encoders 
use predictive probabilities to perform compression, better 
predictive models lead directly to better compressors[25]. 
Hence, the astonishing capability of LLM implies the poten‑
tial for an unprecedented source codec. On the other hand, 
the Error Correction Code (ECC) plays an indispensable role 
in channel coding. Although some advanced algebraic block 
codes like Bose–Chaudhuri–Hocquenghem (BCH) codes[26], 
Low-Density Parity-Check (LDPC) codes[27] and Polar codes[28] 
can somewhat ensure the reliability of transmission, the effi‑
cient decoding of ECC is an unresolved difficulty. Recently, 
DNNs have started to demonstrate their contribution to chan‑
nel coding. For example, deep learning models are imple‑
mented to achieve belief propagation (BP) decoding[29–31], 
while a model-free Error Correction Code Transformer 
(ECCT) for algebraic block codes[32] contributes to the en‑
hancement of decoding reliability.

In this paper, on top of an LLM-based arithmetic coding 
(LLM-AC) system, the proposed SSCC framework integrates 
fine-grained, semantics-aware probability modeling and en‑
coding with ECCT-enhanced channel decoding, thus forming 
a closed-loop optimization framework. To the best of our 
knowledge, this work represents the first comprehensive inte‑
gration of LLM-based compression and ECCT-
complemented channel decoding for a holistic SemCom ar‑
chitecture. Through extensively showcasing the performance 
superiority over JSCC, we argue this performance improve‑
ment primarily arises after tackling the underlying incompat‑
ibility between conventional SemCom approaches[3–7, 11–14] 
and digital communication architectures[33]. Particularly, 
those approaches simply assume the deliverability of en‑
coded semantic feature vectors while neglecting the energy 
costs associated with transmitting high-precision floating 
point numbers[33]. However, further quantization[9–10] and 
digital modulation can compromise the widely assumed exis‑
tence of performance superiority in JSCC. Meanwhile, in con‑
trast to the direct utilization of the astonishing semantic in‑
terpretation capability[34–36], the deployment of LLMs fo‑
cuses on the compression and encoding of text to squeeze the 
largely untapped redundancy. Therefore, our work is also sig‑
nificantly different from existing integrations of generative 
AI (GAI) and SemCom[37–43]. Furthermore, the adoption of 
ECCT boosts the effectiveness of SSCC in specific cases. In 
summary, our comprehensive evaluation of LLM and ECCT-
based SSCC demonstrates that separate source channel cod‑
ing is still what we need.

The rest of this paper is organized as follows. Section 2 in‑
troduces the SSCC system model, while its key components 
are enumerated in Section 3. Section 4 provides numerical 
results demonstrating the performance superiority of the pro‑
posed SSCC system. Finally, Section 5 concludes this paper 
with discussions on future works. For convenience, we list 
the major notations of this paper in Table 1.
2 System Model

Our SSCC framework encompasses the following ingredients.
1) Source encoding
The input text sequence denoted as s undergoes a source 

encoder that converts characters into a compressed binary 
message m ∈ { 0,1 }K. During source encoding, arithmetic cod‑
ing (AC) can be leveraged for effective compression here. 
For LLM-based processing, an intermediate result (i.e., a se‑
quence of tokens t) can be obtained during the transforma‑
tion from s to m.

Table 1. Major notations used in this paper
Notation
s,  ŝ

t, t̂
Cs, Ce

ρ, ρ͂

D, Di, τ

Ik, lk, uk

m, m̂

λ

N, K
G, H

x, xb, xs

x̂, x̂b

N ( ⋅ ,⋅ ) , σn

h

z, z͂, ẑ

y, yb, y͂
syn ( ⋅ )
f ( ⋅ )
W

g ( ⋅ )

Definition
The transmitted text sequence and the recovered text sequenceat the re‑

ceiver side
The transmitted token sequence and the recovered token sequence at 

the receiver side
The source code and the channel code (error correction code)

The source distribution and the predicted probability distribution via 
LLM

The dictionary of source coder, the i-th character in the dictionary, and 
the vocabulary of the dictionary

The probability interval in step k of source coding and its correspond‑
ing lower and upper bounds

The message encoded by the source coder and the received (and chan‑
nel decoded) message

The probability interval, determined by the codeword, in a decimal form
The codeword length and message length of error correction code 

Ce(N,K )
The generator matrix and the parity check matrix

The transmitted codeword encoded by the channel coder and its binary 
and sign form

The soft approximation of codeword and its binary form
The Gaussian distribution and the standard deviation of noise

The channel fading coefficient
The additive Gaussian noise, as well as its corresponding multiplicative 

noise and the prediction result by ECCT
The noisy codeword, its binary form, and the result of pre-processing 

noisy codeword
The syndrome of codes defined in ECCT

The decoding function of ECCT
The learnable embedding matrix for high-dimensional mapping

The code-aware self-attention mask
ECCT: Error Correction Code Transformer       LLM: Large Language Model
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2) Channel encoding and modulation
The message m is then encoded via an LDPC code 

Ce(N,K ), which is selected for its excellent error-correction 
capabilities and compatibility with iterative decoding algo‑
rithms, as mentioned in Ref. [32]. The encoding process em‑
ploys a generator matrix G to transform the message in m to a 
codeword xb ∈ { 0,1 }N. The parity check matrix H, which sat‑
isfies G ⋅ H T = 0 and H ⋅ xb = 0, is a key component of the 
LDPC decoding process. Afterwards, binary phase shift key‑
ing (BPSK) modulation maps the binary codeword xb to a se‑
quence of symbols xs ∈ {±1}N, suitable for transmission over 
the wireless channel. Notably, other error correction codes, 
such as Polar codes[28], can be applied as well.

3) Channel
The modulated signal xs is transmitted over a noisy chan‑

nel, modeled as an additive white Gaussian noise (AWGN) 
channel or a Rayleigh fading channel. The received signal 
y ∈ RN is corrupted by additive noise z ∼ N (0, σ2

n ), result‑
ing in y = hxs + z, where h is the channel fading coefficient.

4) Demodulation and channel decoding
BPSK demodulation recovers a binary codeword 

x̂b ∈ { 0,1 }N from x̂. Subsequently, the channel decoder recon‑
structs the message m̂ ∈ { 0,1 }K from x̂b. In contrast to conven‑
tional approaches that employ either hard-decision (e. g., the 
bit-flipping algorithm) or soft-decision (e. g., the sum-product 
algorithm) algorithms to decode LDPC codewords transmitted 
through the channel, some complementary decoding modules, 
such as ECCT, can be applied prior to demodulation to en‑

hance the decoding performance. Notably, ECCT can provide 
an estimation of the transmitted codeword x̂b, denoted as x̂, 
while subsequent demodulation and information bits extrac‑
tion are then performed on the estimated codeword x̂.

5) Source decoding
The recovered message m̂ is ultimately decoded by the 

source decoder, which reconstructs the text sequence ŝ from 
the message, effectively reversing the encoding process. 
Similar to the encoder, the decoder can implement arithme‑
tic decoding.

In comparison, JSCC typically employs an end-to-end 
DNN to implement source and channel codecs. Here, the ter‑
minology “end-to-end” implies the joint training of source 
and channel codes, as adopted in most works. Further details 
on JSCC can be found in Ref. [1] and the references therein. 
In the following section, we will address how to leverage the 
strength of LLM to enhance text compression and reconstruc‑
tion, combined with the robustness of ECCT-complemented 
LDPC codes for error correction, as shown in Fig. 1.
3 Proposed SSCC Framework

In this section, we introduce LLM-based source coding 
and ECCT-complemented channel coding.
3.1 LLM-Based Source Coding

Given a source distribution ρ, lossless compression aims to 
encode a text sequence s sampled from ρ into a binary code m =
Cs( s) of minimal possible length with no loss of original infor‑

Figure 1. Framework of LLM-based and ECCT-complemented SSCC system

AC: arithmetic coding      BPSK: binary phase shift keying      ECCT: Error Correction Code Transformer      LLM: Large Language Model

Input s

Token t Message
m ∈ { }0, 1 K

Codeword
xb ∈ { }0, 1 N

sign xS ∈ { }±1 N

Noisy codeword
y ∈ RN

Pre-process
y͂ = [ ]|| y , syn (y )

x̂b ∈ { }0, 1 N

Post-process
x̂ = y ⋅ ẑ ∈ RN

Tokenizer Source encode Channel encode LDPC (N, K) Modulate BPSKbin_to_sign (·)

Channel
z~N (0, σ2

n )

ECCT fθ ( y͂ )loss = BCE ( ẑ, z͂ )
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LLM
p͂ ( tk + 1| t1:k )
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p͂ ( tKn + 1 + 1| t1:kn + 1 )
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mation. According to Shannon’s source coding theorem[44], the 
optimal expected bit length is Lmin = Es ∼ ρ[ - log2 ρ ( s) ]. To 
obtain such optimal length, arithmetic coding[45–46], a form of 
entropy encoding, is typically adopted, relying on a probabilis‑
tic model over ρ or its marginal distribution. Arithmetic coding 
implies that frequently used characters are stored with fewer 
bits while rarely occurring characters correspond to more bits, 
resulting in fewer bits used in total.

In particular, the input text sequence s undergoes tokeniza‑
tion by the LLM tokenizer, which converts characters into a se‑
quence of tokens t for processing by the LLM. The LLM subse‑
quently generates a compact representation of the text, effec‑
tively encoding the tokens into a compressed binary message 
m ∈ { 0, 1 }K. Specially, considering a dictionary D of τ tokens, 
the input sequence s is first parsed into the token sequence t. 
Given the first k tokens t1:k, the (k + 1)-th token tk + 1 can be 
inferred as a predicted probability distribution ρ͂ ( tk + 1|t1:k ). 
Here, ρ͂ ( tk + 1|t1:k ) indicates the LLM’s estimation of the true 
distribution ρ ( tk + 1|t1:k ). The incremental decoding nature in 
LLM enables it to accurately predict the probability distribu‑
tion of the next token based on known ones, thereby providing 
a sub-optimal estimation of the true distribution[25]. As shown 
in Fig. 2, selecting the next character effectively narrows 
down the probabilistic interval where the sequence is located, 
which means the code m is determined once the interval is 
fixed. Starting with I0 = [0, 1), the previous interval deter‑
mined by t1:k in step k is defined as Ik = [ lk, uk ). Therefore, de‑
noting p ( tk + 1 = Dj ) = ρ͂ ( tk + 1 = Dj|t1:k ),

Ik + 1( )Di =
é

ë

ê

ê
êê
ê

ê ö

ø

÷

÷
÷÷÷
÷
÷

÷lk + ( )uk - lk × ∑j < i
p ( )tk + 1 = Dj ,

lk + ( )uk - lk × ∑j ≤ i
p ( )tk + 1 = Dj

(1).

In practice, we consider finite precision arithmetic encod‑
ers, referring to Ref. [47], with pseudo-code provided in Ap‑
pendix 1. Consequently, we can obtain a binary code m =
Cs( s) of the shortest length, completely corresponding to the 
probability interval determined by the sequence. At the re‑
ceiver side, if the receiver shares a consistent source distri‑
bution ρ͂ with the sender, given the received (and channel-
decoded) bit sequence m̂ corresponding to Cs( s), we can de‑
code tKn + 1 = Di ∈ D by identifying Di, such that
În + 1 = [ )ln + 1, un + 1 =
ì

í

î

ï
ïï
ï

ï
ïï
ï

[ )ln, 1
2 ( )ln + un , if mn + 1 = 0

[ )1
2 ( )ln + un , un , if mn + 1 = 1

⊆ ÎKn + 1( )Di = [ )L, U (2),

where L = lKn + 1 + (uKn + 1 - lKn + 1 ) × ∑j < i
p ( )tKn + 1 + 1 = Dj  and 

U = lKn + 1 + (uKn + 1 - lKn + 1 ) × ∑j ≤ i
p ( )tKn + 1 + 1 = Dj . For more 

details, please refer to Appendix 1.
Fig. 3 illustrates such LLM-based arithmetic encoding 

and decoding, where the LLM provides a probability interval 
according to the text sequence s. Unlike the online setting, 
which trains the model on the data to be compressed, this pa‑
per assumes the availability of a well-trained LLM and em‑
ploys it to compress different datasets, following the offline 
setting used in Ref. [24].

Remark 1: Ref. [25] figures out that the expected code 
length achieved by leveraging LLM as a compressor could be 
represented as the cross-entropy, that is,

H ( )ρ, ρ͂ ≔ Es ∼ ρ[ ]∑i = 1
n - log2 ρ͂ ( )si|s< i (3),

where ρ is the source distribution and ρ͂ is the estimation of ρ 
via a parametric probabilistic model. Hence, the compres‑

Figure 2. An example of arithmetic coding
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sion shares the same training objective as prediction. There‑
fore, it can be interpreted as the link between the model log-
loss and the compression rate, providing theoretical support 
for the employment of LLM for source coding.
3.2 Error Correction Code Transformer

ECCT[48] belongs to the complementary Transformer-like 
module. It ensures the channel decoding reliability. Notably, 
ECCT involves specific preprocessing and post-processing 
steps to avoid overfitting effectively. Without the loss of gen‑
erality, before preprocessing, the syndrome of codes is de‑
fined by

syn ( )y ≔ Hyb = Hsign_to_bin (y ) =
1
2 H ( )1 - sign ( )y ∈ {0,1 }N - K (4).

This should be checked first upon receiving the signal 
since corruption could be detected immediately if syn (y ) is 
a non-zero vector. In other words, an all-zero syndrome en‑
sures that the received signal suffers no distortion. Note that 
the function sign_to_bin (·) could be viewed as a hard deci‑
sion on y and sign (·) here denotes a sign function defined by

sign ( )y
ì

í

î

ïïïï

ïïïï

1,        y > 0
0,        y = 0

-1,        y < 0
(5).

Next, ECCT constructs a 2N - K dimensional input em‑
bedding by concatenating the element-wise magnitude and 
syndrome vectors, such that
y͂ ≔ [ ]|| y ,syn ( )y ∈ R2N - K (6),

where [·,·] denotes vector/matrix concatenation and | y | de‑
notes the absolute value (magnitude) of y.

The objective of the decoder is to predict the multiplica‑
tive noise z͂ from y, where y = hxs + z = xs(h + xs z ) = xs z͂. 
Compared to traditional Transformer architectures[19], ECCT 
introduces two additional modules for positional reliability 
encoding and code aware self-attention, as shown in Fig. 4. 
Notably, ECCT processes the channel output y as input and 
generates a prediction ẑ of the multiplicative noise z͂. The 
key differences between ECCT and traditional Transformer 
architectures are highlighted in the dashed-line boxes in 
Fig. 4. Implementation details are provided in Appendix 2.

Finally, the training process aims to minimize the binary 
cross entropy (BCE) loss between the predicted noise ẑ and 
the multiplicative noise z͂, given by

loss = BCELoss ( )ẑ, z͂   =

- 1
N  ∑i( )bin ( )z͂ i ⋅ log ( )σ ( )ẑ i +

( )1 - bin ( )z͂ i ⋅ log ( )1 - σ ( )ẑ i

(7),

Figure 3. LLM-based arithmetic encoding and decoding
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ÎKn + 1:
lKn + 1

uKn + 1 lKn + 1

Correspond

L U uKn + 1

Kn+1++

Decoded tokens t̂1:Kn + 1

t̂Kn + 1 + 1 = Di ŝ
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where σ ( ⋅ ) denotes the sigmoid activation function.
Remark 2: The estimation of multiplicative noise is repre‑

sented as ẑ = f ( y͂ ), while the post-processing step estimates 
x by x̂ = sign_to_bin (y ⋅ f ( y͂ ) ). Given that, for correct esti‑
mation, sign ( ẑ ) = sign ( z͂ ). Therefore,
x̂ = sign_to_bin ( )y ⋅ f ( )y͂ =
sign_to_bin ( )xs z͂ ⋅ ẑ = sign_to_bin ( )xs = x (8).
In other words, ECCT contributes to noise-free channel 

coding.
4 Experiments

In this section, we compare the proposed method with tra‑
ditional SSCC approaches and existing JSCC solutions under 
both AWGN and Rayleigh fading channels.
4.1 Simulation Settings

To facilitate comparison, we utilize a pre-processed data‑

set consisting of the standard proceedings of the European 
Parliament[49]. A segment of this dataset is selected as an ex‑
ample and fed as the source to a Generative Pre-Trained 
Transformer 2 (GPT2)[50] model for source coding. In this nu‑
merical experiment, we primarily choose the smallest GPT2-
base model with 124 million parameters, while larger models 
(e. g., the 355-million-parameter GPT2-medium, the 774-
million-parameter GPT2-large, and the1.5-billion-parameter 
GPT2-XL) are subsequently used for comparative analysis. 
Arithmetic coding based on the LLM is configured with a 
precision limit of 31 bits. For channel coding, we adopt an 
LDPC code with an information word length of 24 and a code‑
word length of 49, denoted as LDPC(49, 24), resulting in a 
code rate close to 1/2. Subsequently, ECCT is used for alge‑
braic block code decoding, which is capable of training on 
diverse error correction codes. The hyperparameter settings 
for ECCT training are detailed in Table 2. For comparative 
analysis, we select Deep Learning-Based Semantic Commu‑
nication (DeepSC)[12], Universal Transformer (UT)[14], and UT 

Figure 4. ECCT architecture

Feed forward

Multi-head attention

☉☉

Linear2N−K➝N

Linear
dmodel➝1

Feed forward

Multi-head attention

Add & norm
Masked multi-head attention

Softmax

g(·)

syn(·)􀰛H·bin_to_sign(·)

Encoder

Ndec×

Positionalencoding

High dimensional embedding ϕ

Initial embedding
Input y

Pre-processing
y͂ = [ ]|| y , syn ( )y

2N-K bits learnable embedding W Outputs embedding(shifted right)

Positionalencoding

Code-awareself-attention

Output ẑ Post-processing
x̂ = sign_to_bin (y ⋅ ẑ )
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with quantization* as benchmark JSCC algorithms. Consider‑
ing the subsequent signal-to-noise ratio (SNR) performance 
comparison, both algorithms are trained using mixed preci‑
sion (i. e., float16), which, as discussed later, has a minimal 
negative impact on SNR computation. Key parameters used 
for training DeepSC and UT are also listed in Table 2. Be‑
sides, the traditional approach employs Huffman coding for 
source coding. Furthermore, bilingual evaluation understudy 
(BLEU)[51] and semantic similarity measured by BERT[52] are 
used to measure performance, as these metrics are widely 
recognized in natural language processing.

Most existing SemCom works evaluate the performance with 
respect to the SNR = 10 log10 (E tb N0 ) dB, where E tb denotes 
the energy associated with transmitting a single bit after 
source/channel coding and digital modulation, and N0 repre‑
sents the noise power spectral density. However, since differ‑
ent coding and modulation schemes across different communi‑
cation methodologies result in varying numbers of bits trans‑
mitted over the physical channel, such a comparative metric 
of SNR ignores the differences in delivering different numbers 
of bits. Instead, referring to the total energy consumption E total by sending Numunified bits through the physical channel in an 
LLM-based SSCC system, we propose a consistent definition 
of SNR in terms of an LLM-based SSCC reference baseline 
SNRunified, as a function of the practically employed bits Num. 

Mathematically, this is expressed as:
SNR = 10log10 ( E total

N0 ⋅ Num ) =

10log10 ( E total
N0 ⋅ Numunified

× NumunifiedNum ) =

SNRunified + 10 log10 ( )NumunifiedNum (9),

where SNRunified is used as an independent variable for align‑
ing E total, while for bit-oriented transmission (resp. float-
based JSCC), Num denotes the number of bits (resp. float 
vectors) transmitted through the channel.

On the other hand, as mentioned in Section 1 and Ref. 
[33], deep learning-based JSCC systems extract the semantic 
feature of information to embed vectors in latent space, 
which is incompatible with digital communication systems. 
For JSCC methodologies like UT[14] and DeepSC[12], transmit‑
ting a float number certainly consumes far more energy than 
delivering a binary bit. In this case, if float16 is adopted, we 
can roughly assume it consumes an additional 10 ×
log10 (16) ≈ 12.04 1 dB. Hence, for the float-based JSCC 
methods, the unified evaluation metric is further modified to 
maintain a consistent energy consumption across different 
methodologies. In summary,

SNR =
ì

í

î

ï
ïï
ï

ï
ïï
ï

SNRunified + 10log10( )NumunifiedNum + 12.041,     float based
SNRunified + 10log10( )NumunifiedNum ,                otherwise

(10).
During evaluation, experiments are conducted for differ‑

ent schemes in terms of SNRunified.
4.2 Numerical Results

In this section, we implement the GPT2-base model as a 
compressor and ECCT-complemented LDPC(49, 24) as the 
error correction code, and compare it with DeepSC, UT, UT 
with quantization and the classical SSCC encompassing Huff‑
man coding and ECCT (Fig. 5). The results demonstrate the 
superior performance of the proposed SSCC over the other 
three schemes. Similarly, we evaluate the performance under 
a Rayleigh fading channel in Fig. 6, where the results show 
that our system has a clear advantage in terms of the word-
level BLEU score. However, in terms of semantic similarity, 
both the LLM-based and the traditional Huffman-based 
SSCC systems exhibit some disadvantages at lower SNRs, 
but still maintain a noticeable advantage at high SNRs.

In addition to presenting our key experimental results 

* Compared to DeepSC and UT that directly transmit the encodes floats, UT with quantization maps the encoding results to a fixed number (30) of bits for transmission.

Table 2. Mainly used hyperparameters in the experiments

Model

ECCT

DeepSC

UT

Hyperparameter
Learning rate

Batch size
Number of decoder layers
Dimension of embedding

Number of attention heads
Learning rate

Batch size
Number of encoder/decoder layers

Dimension of embedding
Dimension of FFN

Number of attention heads
Learning rate

Batch size
Number of encoder/decoder layers

Dimension of embedding
Dimension of FFN

Number of attention heads

Value
10-4

128
6

32
8

10-4

64
4

128
512

8
10-4

64
3

128
1 024

8
DeepSC: Deep Learning‑Based Semantic 

Communication
ECCT: Error Correction Code Transformer 

FFN: Feed Forward Network 
LLM: Large Language Model
UT: Universal Transformer

36



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

REN Tianqi, LI Rongpeng, ZHAO Mingmin, CHEN Xianfu, LIU Guangyi, YANG Yang, ZHAO Zhifeng, ZHANG Honggang 

     Separate Source Channel Coding Is Still What You Need: An LLM-Based Rethinking        Special Topic

with SNRunified as the alignment metric, Fig. 7 provides perfor‑
mance comparisons using traditional SNR alignment, as well 
as the ratio of E total used by different systems over our LLM-
based solution. This illustrates the additional energy con‑
sumption of JSCC systems in achieving superior perfor‑
mance. Apparently, JSCC systems in SemCom achieve sig‑
nificant gains mainly due to the extra energy consumption.

Afterward, we validate the contributing effectiveness of 
ECCT[32] by comparing the performance of error correction 
codes with different coding rates under the same code 
length. Without loss of generality, the evaluation results 
based on LDPC under AWGN and Rayleigh fading channels 
are given in Fig. 8. Notably, while the work in Ref. [32] does 

not include Rayleigh channel results, inspired by the subse‑
quent work on Denoising Diffusion Error Correction Codes 
(DDECC[53]), we extend ECCT to Rayleigh channels in a simi‑
lar manner. It can be observed from Fig. 8 that compared to 
traditional LDPC decoding methods such as bit-flipping, 
ECCT provides consistent performance improvements. Fur‑
thermore, for error correction codes of the same length, lower 
coding rates demonstrate better recovery of noisy signals un‑
der the same SNR. More importantly, without ECCT, tradi‑
tional algorithms struggle to decode noisy signals under Ray‑
leigh channels effectively, and reducing the coding rate 
slightly improves the performance trivially. However, ECCT 
trained under the Rayleigh channel achieves as competitive 

Figure 6. BLEU and similarity scores versus SNRunified are evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is 
compared with Huffman coding with LDPC (49, 24) in BPSK; DeepSC, UT, and UT with quantization trained under the Rayleigh fading channel

AC: arithmetic coding BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer

AC: arithmetic coding BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer

Figure 5. BLEU and similarity scores versus SNRunified are evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is 
compared with Huffman coding with LDPC (49, 24) in BPSK, DeepSC, UT, and UT with quantization under the AWGN channel
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performance as that under the AWGN channel.
Considering the scaling law and emergent abilities of 

LLMs, we evaluate the performance by combining different 
models from the GPT2 family with ECCT-complemented 
LDPC channel coding (i. e., a high-rate LDPC(121, 110) 
code). Both the end-to-end SSCC performance in Fig. 9 and 
the compression rate in Fig. 10 indicate a notable perfor‑
mance improvement after adopting a model larger than 
GPT2. However, the performance difference among GPT2-
medium, GPT2-large, and GPT2-XL is marginal. We hypoth‑
esize that while increasing the model size beyond a certain 
threshold contributes significantly to system performance, 

variations within a specific range of model scales yield di‑
minishing returns. Furthermore, inspired by Ref. [54], the 
performance comparison with Zlib and static Huffman cod‑
ing in Fig. 10 demonstrates that LLM-based arithmetic cod‑
ing significantly outperforms traditional methods. Moreover, 
a scaling law is observed in the compression performance, 
which somewhat corroborates the findings of Ref. [54].

The experimental results presented in Table 3 further in‑
vestigate the influence of the token block size on perfor‑
mance. It can be observed that at higher SNR levels, the per‑
formance generally improves as the block size increases, in‑
dicating that larger block sizes facilitate enhanced semantic 

Figure 8. BLEU-4 score versus SNRunified for the same number of transmitted symbols, with different code rates using LDPC (49, 24) / / LDPC (49, 30) / / 
LDPC (49, 36) in BPSK, compared with the situations removing ECCT, under (a) AWGN and (b) Rayleigh fading channels

AWGN: additive white Gaussian noise BLEU: bilingual evaluation understudy ECCT: Error Correction Code Transformer LDPC: Low-Density Parity-Check SNR: signal-to-noise ratio

Figure 7. BLEU-4 score versus SNR is evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is compared with 
Huffman coding with LDPC (49, 24) in BPSK (without ECCT), DeepSC, UT, and UT with quantization trained under (a) AWGN and (b) Rayleigh 

fading channels; (c) shows the ratio of E total among different systems

AC: arithmetic coding AWGN: additive white Gaussian noise BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer
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preservation due to their ability to capture more contextual 
information. However, at lower SNR levels, the performance 
declines with an increase in the block size, suggesting that 
smaller blocks may be more resilient to avoid cumulative 

source decoding errors in these challenging scenarios.
5 Conclusions and Discussions

In this paper, we present a comprehensive analysis and 
evaluation of SSCC, with a comprehensive comparison to 
JSCC in the context of SemCom. Our proposed SSCC frame‑
work, which integrates LLMs for source coding and ECCT for 
enhanced channel coding, demonstrates significant perfor‑
mance improvements over JSCC in terms of recovery perfor‑
mance at both the word and semantic levels under both 
AWGN and Rayleigh fading channels. This highlights the po‑
tential effectiveness of SSCC in information transmission. In 
particular, through extensive experiments, we validate the 
strong compressive capability of LLMs to eliminate redun‑
dancy in text and the robustness of ECCT in enhancing de‑
coding reliability under various channel conditions. In a 
word, separate source channel coding is still what we need.

Nevertheless, despite the validated performance superior‑
ity of SSCC, there remain several important issues worthy of 
further clarification and investigation.

1) The performance evaluation of text transmission sounds 
inspiring. The proposed SSCC framework is channel-
agnostic, while given the well-known generality issues, the 
DNN-based JSCC faces a performance decline when the 
channel changes significantly. However, an extension to im‑
age transmission can be more challenging, and several is‑
sues like sequential tokenization require effective solutions. 
In this regard, potential solutions can incorporate patch divi‑
sion from Vision Transformer (ViT) to replace text tokeniza‑
tion, thereby segmenting images into semantic units for en‑
coding. Consequently, the LLM-AC text predictor can be 
transformed into a probability modeler for image patches. 
Furthermore, the iterative decoding of ECCT can mitigate 
the error propagation issues in traditional JSCC, which is 
particularly crucial for multimedia transmission with high-

Table 3. Influence of token block sizes on system performance during 
LLM-based arithmetic source encoding for SNR={−6, 0, 6}

Block 
size
16
32
64

128

Similarity
−6

0.770 8
0.712 3
0.700 1
0.758 7

0
0.915 7
0.935 9
0.893 8
0.857 3

6
0.999 3
0.998 4
0.999 9
0.999 9

BLEU-1
−6

0.197 5
0.172 5
0.116 0
0.183 1

0
0.645 2
0.584 2
0.580 1
0.434 4

6
0.987 7
0.978 7
0.996 9
0.999 9

BLEU-4
−6

0.007 2
0.005 5
0.001 8
0.003 8

0
0.508 1
0.466 6
0.427 0
0.252 9

6
0.983 0
0.969 4
0.992 2
0.999 9

BLEU: bilingual evaluation understudy
LLM: Large Language Model 

SNR: signal-to-noise ratio

Figure 9. BLEU and similarity scores of models versus SNRunified, with different parameter scales (GPT2, GPT2-medium, GPT2-large, GPT2-XL), 
using LDPC (121, 110) as the error correction code

BLEU: bilingual evaluation understudy       GPT: Generative Pre-trained Transformer       SNR: signal-to-noise ratio

Figure 10. Compression rate comparison between traditional methods 
(Zlib and Huffman coding) and LLM-AC

GPT: Generative Pre-Trained Transformer
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fidelity requirements. On the other hand, our experimental 
experience indicates the accuracy of channel coding is of vi‑
tal importance for end-to-end performance. Hence, we only 
consider a relatively low, fixed code rate here. However, sys‑
tematic tuning of the code rate is also a worthwhile direction 
for future research.

2) This paper only considers the classical JSCC design, 
while ignoring the latest quantization and digital modulation 
techniques that have emerged in the development of JSCC. 
For example, Refs. [9] and [10] show that utilizing a sparsity 
module to quantize the image embedding can yield signifi‑
cant performance gain. However, Refs. [9] and [10] have not 
compared their approaches with the remarkable capabilities 
of LLMs, and thus it remains unclear whether these amend‑
ments would enable JSCC to surpass LLM-based SSCC in a 
fair comparison. Nevertheless, given the inspiring results in 
this paper, there is no doubt that SSCC should be carefully 
improved rather than dismissed.

3) What we have to acknowledge is that integrating LLMs 
into the SSCC framework requires substantial computational 
resources for both encoding and decoding processes. How‑
ever, we currently leverage pre-trained LLMs, which possess 
inherent generalization capabilities and can handle a broad 
range of natural language datasets. This contrasts with JSCC 
methods, which often rely on training with specific datasets 
to achieve superior performance. If a specific dataset is em‑
ployed, we can explore the possibility of model distillation. 
By utilizing a Transformer model with significantly fewer pa‑
rameters while retaining the LLM’s tokenizer and perform‑
ing self-supervised training on the target dataset, we can sub‑
stantially reduce computational overhead while maintaining 
reasonable performance. We will further investigate model 
distillation in future work.

4) The discussions on JSCC are limited to the scenario to 
recover the semantics as accurately as possible. For Sem‑
Com[1], effectiveness-level or pragmatic communications may 
target at accomplishing different tasks under remotely con‑
trolled, noisy environments, rather than simple recovery of 
accurate semantics. In such cases, the underlying philoso‑
phy of JSCC may offer unique advantages.

5) Extensive works have been conducted to improve the 
performance of model-free decoders. For example, Ref. [55] 
proposes a systematic and double mask eliminating the diffi‑
culty of identifying the optimal parity-check matrix (PCM) 
from numerous candidatesfrom the same code. For perfor‑
mance enhancement on moderate code-length decoding, U-
ECCT is proposed in Ref. [56] inspired by U-Net, while in 
Ref. [53], the Denoising Diffusion Probabilistic Model 
(DDPM)[57] is employed to model the transmission over chan‑
nels as a diffusion process. Furthermore, a foundation model 
for channel codes is proposed in Ref. [58] for application to 
unseen codes. Therefore, these recent works are worthy to be 
evaluated in the SSCC framework.
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Appendix 1: Pseudo code of finite precision 
arithmetic codec

Appendix A: Pseudo code for encoder

Algorithm 1 Finite-precision arithmetic encoding
Require: Nk: Current number of emitted bits mNk

Require: pcum(Di|t1:k ): Cumulative probability of token 
tk + 1 = Di ∈ D given first k tokens

Require: lk, uk: Current interval determined by the first k 
tokens

Require: εk: Number of scaling bits
1.  Initialization:
2.  Nk + 1 ← Nk3.  lk + 1 ← lk + (uk - lk ) pcum(Di - 1|t1:k ) // If k = 0, use 

pcum(Di - 1 )
4.  hk + 1 ← lk + (uk - lk ) pcum(Di|t1:k ) // If k = 0, use 

pcum(Di )
5.  εk + 1 ← εk6.  Scaling:
7.  while any of the scaling conditions is met do
8.          if uk + 1 < 0. 5then
9.                  // Scaling 1
10.                lk + 1, uk + 1 ← 2lk + 1, 2uk + 111.                mNk + 1 + 1 ← 0 // Emit one bit􀆳s 0
12.                mNk + 1 + 2:Nk + 1 + 1 + εk + 1 ← 1 // Emit εk + 1 bits􀆳 1
13.                Nk + 1 ← Nk + 1 + 1 + εk + 114.                εk + 1 ← 0
15.          else if lk + 1 ≥ 0. 5 then
16.                // Scaling 2
17.                lk + 1, uk + 1 ← 2 ( lk + 1 - 0. 5) , 2 (uk + 1 - 0. 5)
18.                mNk + 1 + 1 ← 1 // Emit one bit􀆳s 1
19.                mNk + 1 + 2:Nk + 1 + 1 + εk + 1 ← 0 // Emit εk + 1 bits􀆳 0
20.                Nk + 1 ← Nk + 1 + 1 + εk + 121.                εk + 1 ← 0
22.           else if 0. 25 ≤ lk + 1 < 0. 5 ≤ uk + 1 < 0. 75  then

23.                // Scaling 3
24.                lk + 1, uk + 1 ← 2 ( lk + 1 - 0. 25) , 2 (uk + 1 - 0. 25)
25.                εk + 1 ← εk + 1 + 1
26.           end if
27.  end while
28.  return Nk + 1, mNk + 1:Nk + 1 // Updated emitted bits

Appendix B: Pseudo code for decoder

Algorithm 2 Finite-precision arithmetic decoding
Require: Kn: Current number of decoded tokens
Require: pcum(Di|t1:Kn ): Cumulative probability of token 

tKn + 1 + 1 = Di ∈ D given first Kn tokens
Require: ln, un: Current interval determined by the first n 

bits
Require: lKn

, uKn
: Interval of sequence t1:Kn

 that has been 
decoded

1.  Initialization:
2.  Kn + 1 ← Kn3.  lKn + 1,hKn + 1 ← lKn

,hKn4.  if the (n + 1)-th bit mn + 1 = 0 then

5.          ln + 1,hn + 1 ← ln, 1
2 ( ln + hn )

6.  else

7.          ln + 1,hn + 1 ← 1
2 ( ln + hn ) ,hn

8.  end if
9.  while Not End-of-Sentence symbol do
10.        Search:
11.        Find Di ∈ D such that:
12.              L = lKn + 1 + (uKn + 1 - lKn + 1 ) pcum(Di - 1|t1:Kn ) // If 

Kn = 0, use pcum(Di - 1 )
13.           U = lKn + 1 + (uKn + 1 - lKn + 1 ) pcum(Di|t1:Kn ) // If 

Kn = 0, use pcum(Di )
14.                 L ≤ ln + 1 < un + 1 < U // i. e.  current interval 

of the n-th bit is included in the interval of Di15.         if Di exists then
16.                 Update:
17.                 Kn + 1 ← Kn + 1 + 1
18.                  tKn + 1 ← Di//Output Di to the token sequence t
19.                  lKn + 1, uKn + 1 ← L, U
20.                  Scaling: Similar to the Scaling in Algorithm 1
21.                  Go to Search
22.          else
23.                  return Kn + 1, tKn + 1:Kn + 124.           end if
25.  end while
26.  return Kn + 1, tKn + 1:Kn + 1 // Updated decoded tokens
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Appendix 2: Two key modules of ECCT

Appendix C: Positional reliability encoding
For the channel output y, the positional reliability encod‑

ing transforms each dimension of y͂ into a high d dimensional 
embedding ϕ, which enriches the information of input em‑
bedding vectors and replaces y͂ as the input of ECCT.  The 
transformation is defined by

ϕi = ì
í
î

ïï

ïïïï

|| y i W i,   if  i ≤ N

bin_to_sign ( )syn ( )y i - N + 1 W i,  otherwise (11),

where {W i ∈ Rd }2N - K
i = 1  denotes the learnable embedding ma‑

trix representing the bit􀆳s position-dependent one-hot encod‑
ing.  The encoding method corresponds to the input reliabili‑
ty and is positional, since unreliable information of low mag‑
nitude would collapse to the origin, while the syndrome 
scales negatively.  Hence, it is termed positional reliability 
encoding.
Appendix D: Code-aware self-attention

The code-aware attention mask mechanism aims to inte‑
grate code-specific sparse marks that incorporate the inher‑
ent structural characteristics of their respective PCM as the 
domain knowledge.  Given a codeword defined by the genera‑
tor matrix G and parity check matrix H, the attention mask is 
defined by g (H ) : { 0, 1 }( )n - k × n → {-∞, 0 }( )2n - k × ( )2n - k , the 
construction of which is shown in Algorithm 3.  Then, the 
code-aware self-attention mechanism could be represented as

AH( )Q, K, V = Softmax ( )QKT + g ( )H

d
V (12),

where Q, K* and V denote the query, key and value in self-at‑
tention.  During the implementation, the code-aware atten‑
tion mask mechanism is used as an enhancement of the 
multi-head-attention module in the classical Transformer ar‑
chitecture.

Algorithm 3 Pseudo code of building the attention mask
Require: parity-check matrix H of error correction code 

Ce(N, K )
1.  mask ← eye (2N - K )
2.  for i = 1, 2,…, N - K  do
3.         idx ← where (H [ i] == 1)
4.         for j in idx do
5.                mask[N + i, j ] , mask[ j, N + i] ← 1
6.                for l in idx do

7.                       mask[ j, l] , mask[ l, j ] ← 1
8.                end for
9.          end for
10.  end for
11.  mask ← -∞ (¬mask)
12.  return mask // Output attention mask g (H )
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